OLS/SLR Assessment |: Goodness-of-fit

How close? Goodness-of-Fit (GOF) v. Precision/Inference
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Comparing SLR models using Goodness-of-Fit (GOF) metrics



How did we do? Goodness-of-Fit (GOF) v. Precision/Inference

Assessment: How well did we do? How close are the estimated coefficients to the true
parameters, £, and £? We'll have several answers. None will be entirely satisfactory...

though they will be informative, nonetheless.

Goodness-of-Fit : Goodness-of-Fit metrics tell us something about the quality of the overall
model, about how well the predicteds fit the actuals. They may not tell us much about how
precisely we've estimated the true parameters. But if we have a lot of data and the Goodness-
of-Fit metrics look good, maybe we should feel pretty good about our estimated coefficients.

Precision/Inference: While goodness-of-fit metrics tell us something about how well our
estimated model fits the data, they don't directly tell us anything about how precisely we
have estimated the unknown parameters, the true S's . Later on, we will have lots to say

about precision of estimation... but that discussion awaits the development of the tools of
statistical inference, including Confidence Intervals and Hypothesis Tests.

Who knew? They are related! At first glance that Goodness-of-fit and Precision/Inference
look to be completely unrelated, as one looks at how well a SLR model fits the data whilst
the other considers the precision of estimation of individual parameters. But quite the
contrary!

Stay tuned!



Bring on the ANOVA Table! (SSTs, SSEs and SSRs)

e SST (Total Sum of Squares)
= SST = Z(yi ~¥)* =(n -1)S,,, (n-1) times the variance of the actuals

SSE (Explained Sum of Squares)
= SSE= Z()”/i ~-V)* =(n -1)S; , (n-1) times the variance of the predicteds

SSR (Residual Sum of Squares)
= SSR=)(y,—9)° =D 0% =(n-1S;;, (n—1) times the variance of the residuals

SST = SSE + SSR (if there is a constant term in the model)
SST  SSE N SSR
n-1 n-1 n-1

The sample variance of the actuals is the
sum of the sample variances of the predicteds and of the residuals.

= Put differently: or S, =Sy + Sy

3

1 SSR = SSE



Goodness-of-Fit (GOF) metrics

GOF I: Mean Squared Error (MSE/RMSE)

e Mean Squared Error: MSE = iRZ (in squared units of the y variable)

e Root Mean Squared Error: RMSE =+ MSE = ,/iRZ (in units of the y variable)
n —

GOF Il: R-squared

e The Coefficient of Determination, is defined by: R* _p- >R

SST

e 5o long as there is a constant term in the model (so the mean predicted value is the
same as the mean actual value), SSR = SST —SSE and:

, . SSR SSE SSE/(n-1) SampleVar(predicted) Sy
SST SST SST/(n—-1)  SampleVar(actual) S,

vy



Thinking about R-squared

R2 is bounded: By construction, 0 < R* <1 (if there is a constant term in the model)...
higher values mean that you've done a better job explaining the variation in the actuals.

Don’t get too excited if R* is close to 1, or too depressed if it’s close to 0. Doing good
econometrics is way more than just maximizing R*.

R? as the Ratio of Variances. Given the results above, R-squared is the ratio of the
Sample Variance of the predicteds to the Sample Variance of the actuals... the percent
of the variation of the actuals explained by the model. This is the most common, and

perhaps the most insightful, interpretation of R”.

RZ as the correlation? between predicted and actuals. R? is also the square of the
sample correlation between the independent and dependent variables, as well as the

sample correlation between the actuals and predicteds: py, = p;, = R®.



Y Sample Values

o
»
o

o
@
(=]

o
n
2]

o
o
o

o
r-y
o

o
w
o

Sample Regression y=-03463x +0.8447
Function (n=5) R? = 0.5022
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parameter values f, and g,. In some cases, R-squared will be high and MSE/RMSE
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OLS/SLR estimation ... more generally

metrics (R-squared and MSE/RMSE) tell you something
lel captures/explains the variation in the dependent variable,
do not tell you how well you’ve estimated the unknown

will be low, and your parameter estimates will be quite poor... and vice-versa.

e Some examples:

= Suppose you have a sample of size two. With just two data points, R* =1 and
MSE =0... and in all likelihood you have miserable estimates of the unknown

parameter values.

= Here are two examples with just five observations randomly generated using a
true relationship given by the solid red line.... and the dashed black line shows
you the OLS estimated SLR relationship for the given dataset. In both cases, the

R? is above.5, and the estimated relationship is all wrong. So n matters too!

nObs Matters Too!
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Comparing SLR models using Goodness-of-Fit (GOF) metrics

e You can use R* and MSE/RMSE to compare the performance of different SLR models...
but only to a limited extent. And you must be careful!

e If the different models all have the same LHS data (so the y's are the same in the different
models... both in terms of number and in terms of values), then the SSTsand S 's will be

the same across the models, and you can compare R*'s and MSE/RMSE's. Under these
conditions the R*'s and the MSE/RMSE's will move in opposite directions, since

R R R
SR, >1—SS 2 < SSR, < SSR, & >R, <SS 2 < MSE, < MSE, .
SST SST n—-2 n-2

R >R < 1-

e So under these conditions, models with higher R?'s (and lower MSE/RMSE's) do a better job
of fitting the data, and in that sense are preferable.

e But: If the y's are not the same across the different models, then R*'s and MSE/RMSE's are
not directly comparable and accordingly, they won’t tell you much unless you make some
adjustments.



OLS/SLR Assessment | - GOFs: TakeAways

Goodness of Fit metrics tell you something about how well your OLS/SLR model fits the data... about the
relationship between predicteds and actuals.

SSTs, SSEs and SSRs capture the variances in the actuals, predicteds and residuals, respectively. SST = SSE +
SSR

Two standard GOF metrics are (Root) Mean Squared Error (MSE = SSR/(n-2)) and the Coefficient of
Determination (R-sq = 1-SSR/SST = SSE/SST = varPredicteds/varActuals))

MSE is essentially an average squared deviation of predicteds from actuals... RMSE is the square root thereof.
MSE (RMSE) magnitudes tell you little about how well your model has performed, as they have no uniform scale.

R-sq is essentially the variance of the predicteds relative to the variance of the actuals... or, the percent of the
variation in the actuals explained by the model. 0 < R-sq < 1, closer to 1 and the more of the variation in the
dependent variable explained by the model. High R-sq is terrific if nObs are high as well... but maybe not so
much otherwise.

R-sq is also equal to the square of correlation between the LHS and RHS variables... as well as the square of the
correlation between predicteds and actuals.

It’s OK to compares MSE’s and R-sq’s across models with the same LHS variable... but if there are changes to the
LHS variable, such comparisons are meaningless without adjustments



onwards... to OLS/SLR Examples
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